Well idk if this helps but the formula to solve acceleration is
a=F/m=(100kg)=1.0m/s 2
Answer:
C. At a particular instant
Explanation:
Speed is the defined as the ratio between the distance covered by an object and the time taken:

where d is the distance and t the time.
However, there are two possible measurements of speed:
- Average speed: this is the speed measured over a non-zero time interval (for example: a car moving 100 metres in 5 seconds; its average speed is

- Instantaneous speed: this is the speed of an object measured at a particular instant in time, so for a time interval that tends to zero. So, in the previous example, the average speed is 20 m/s but the instantaneous speed of the car at various instants of time can be different from that value.
Answer: "B" Changing Position
Great Question!
Explanation: <u><em>When a ball bounces to the ground it hits the ground with some energy. The amount of energy with which it hits the ground is kinetic energy. When it comes in the contact with the ground kinetic energy gets converted into potential energy. This potential energy again gets converted into kinetic energy and balls moves again from the ground and bounces multiple times. So, the ball ends up changing position</em></u>
<u><em /></u>
Answer:
y = 80.2 mille
Explanation:
The minimum size of an object that can be seen is determined by the diffraction phenomenon, if we use the Rayleigh criterion that establishes that two objects can be distinguished without the maximum diffraction of a body coincides with the minimum of the other body, therefore so much for the pupil of the eye that it is a circular opening
θ = 1.22 λ/ d
in a normal eye the diameter of the pupils of d = 2 mm = 0.002 m, suppose the wavelength of maximum sensitivity of the eye λ = 550 nm = 550 10⁻⁹ m
θ = 1.22 550 10⁻⁹ / 0.002
θ = 3.355 10⁻⁴ rad
Let's use trigonometry to find the distance supported by this angle, the distance from the moon to the Earth is L = 238900 mille = 2.38900 10⁵ mi
tan θ = y / L
y = L tan θ
y = 2,389 10⁵ tan 3,355 10⁻⁴
y = 8.02 10¹ mi
y = 80.2 mille
This is the smallest size of an object seen directly by the eye