Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Distance= Time×Speed
= 1800×1.5
= 2700 m
I am not sure it's right. the question itself is confusing.
The phases of the moon are the changing appearances of the moon, as seen from Earth. Which phase happens immediately after a third quarter moon are the following
Explanation:
- After the full moon (maximum illumination), the light continually decreases. So the waning gibbous phase occurs next. Following the third quarter is the waning crescent, which wanes until the light is completely gone -- a new moon.
waning gibbous phase
- The waning gibbous phase occurs between the full moon and third quarter phases. The last quarter moon (or a half moon) is when half of the lit portion of the Moon is visible after the waning gibbous phase.
Time takes by the moon to go through all the phases
about 29.5 days
- It takes 27 days, 7 hours, and 43 minutes for our Moon to complete one full orbit around Earth. This is called the sidereal month, and is measured by our Moon's position relative to distant “fixed” stars. However, it takes our Moon about 29.5 days to complete one cycle of phases (from new Moon to new Moon).
- At 3rd quarter, the moon rises at midnight and sets at noon. Then we see only a crescent. At new, the moon rises at sunrise and sets at sunset, and we don't see any of the illuminated side!
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :

where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy 
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.