Well the solvent is the liquid in a solution so your answer would be Solute, D. That is the one that would represent the sugar crystals being evenly mixed into a solution.
Answer:
Calculating Atomic Mass
Change each percent abundance into decimal form by dividing by 100. Multiply this value by the atomic mass of that isotope. Add together for each isotope to get the average atomic mass.
Explanation:
have a nice day
Explanation:
Half life of zero order and second order depends on the initial concentration. But as the given reaction slows down as the reaction proceeds, therefore, it must be second order reaction. This is because rate of reaction does not depend upon the initial concentration of the reactant.
a. As it is a second order reaction, therefore, doubling reactant concentration, will increase the rate of reaction 4 times. Therefore, the statement a is wrong.
b. Expression for second order reaction is as follows:
![\frac{1}{[A]} =\frac{1}{[A]_0} +kt](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%5Cfrac%7B1%7D%7B%5BA%5D_0%7D%20%2Bkt)
the above equation can be written in the form of Y = mx + C
so, the plot between 1/[A] and t is linear. So the statement b is true.
c.
Expression for half life is as follows:
![t_{1/2}=\frac{1}{k[A]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BA%5D_0%7D)
As half-life is inversely proportional to initial concentration, therefore, increase in concentration will decrease the half life. Therefore statement c is wrong.
d.
Plot between A and t is exponential, therefore there is no constant slope. Therefore, the statement d is wrong
Answer:
There is 54.29 % sample left after 12.6 days
Explanation:
Step 1: Data given
Half life time = 14.3 days
Time left = 12.6 days
Suppose the original amount is 100.00 grams
Step 2: Calculate the percentage left
X = 100 / 2^n
⇒ with X = The amount of sample after 12.6 days
⇒ with n = (time passed / half-life time) = (12.6/14.3)
X = 100 / 2^(12.6/14.3)
X = 54.29
There is 54.29 % sample left after 12.6 days
This question is incomplete. Luckily, I found the same problem which is shown in the attached picture. To answer the question, we must know how the size and charge affect the lattice energy. The answer is: lattice energy increases with the increasing charge of the ions, and decreasing radius of the atoms.
<em>Therefore, the ranking would be: A < B < C</em>.