The amount of heat required is 9.0 kJ.
<em>q = mC</em>Δ<em>T
</em>
Δ<em>T</em> = <em>T</em>_f – <em>T</em>_i = 65 °C – 32 °C = 33 °C
<em>q</em> = 65 g × 4.184 J·°C⁻¹g⁻¹ × 33 °C = 9000 J = 9.0 kJ
The answer for the following problem is mentioned below.
- <u><em>Therefore the final temperature of the gas is 740 K</em></u>
Explanation:
Given:
Initial pressure of the gas (
) = 1.8 atm
Final pressure of the gas (
) = 4 atm
Initial temperature of the gas (
) = 60°C = 60 + 273 = 333 K
To solve:
Final temperature of the gas (
)
We know;
From the ideal gas equation;
we know;
P × V = n × R × T
So;
we can tell from the above equation;
<u> P ∝ T</u>
(i.e.)
<em> </em>
<em> = constant</em>
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
=
= 740 K
<u><em>Therefore the final temperature of the gas is 740 K</em></u>
Answer:
52
Explanation:
This is because if R is the midpoint of FRG, FR is half of FRG, so basically all you do it multiply by 2 to get the FRG
Answer: pH = 14
Explanation: Please see the attachments below