Answer:
O2 is limiting reactant
Explanation:
To find the limiting reactant we need to convert the mass of each reactant to the moles using the formula weight. And, as 1 mole of C6H12O6 reacts with 6 moles of O2, we can know wich reactant will be over first (Limiting reactant) as follows:
<em>Moles C6H12O6:</em>
650g * (1mol/180.16g) = 3.608 moles C6H12O6
<em>Moles O2:</em>
650g * (1mol/32g) = 20.31 moles O2
Now, for a complete reaction of 3.608 moles of C6H12O6 are required:
3.608 moles C6H12O6 * (6mol O2 / 1mol C6H12O6) = 21.65 moles O2
As there are just 20.31 moles of O2,
<h3>O2 is limiting reactant</h3>
Answer: 205000000 microliter
Hope this helps!
Answer:
Car 3 with a net force of 12N
Explanation:
The formula is F=MA
Hope this helps friend
Answer:
11,000 cm
Explanation:
Step 1: Given data
Width of the field (w): 17 meters
Length of the field (l): 38 meters
Step 2: Calculate the perimeter of the field
The field is a rectangle. We can find its perimeter (P) by adding its sides.
P = 2 × w + 2 × l = 2 × 17 m + 2 × 38 m = 110 m
Step 3: Convert the perimeter to centimeters
We will use the relationship 1 m = 100 cm.
110 m × (100 cm/1 m) = 11,000 cm
Answer:
a. +2
b. +3
c. -1
Explanation:
The typical oxidation states can be determined from the periodic table based on the number of valence electrons an atom has.
a. Calcium belongs to group 2A, meaning it has 2 valence electrons and, therefore, would have an oxidation state of +2 in compounds.
b. Aluminum is in group 3A, meaning it has 3 valence electrons and would have an oxidation state of +3 in compounds when the 3 electrons are lost.
c. Fluorine would become fluorine if it gained 1 additional electron to achieve an octet, so its oxidation state would be -1.