Answer:
Opposition of passing a electric circuit
Answer:
A.
Explanation:
this would make sense but it seems to be more like they both sound different
The change in the internal energy of the system is 110 kJ.
<h3>What is internal energy?</h3>
Internal energy is defined as the energy associated with the random, disorder motions of molecules.
calculate the change in internal energy, we apply the formula below.
Formula:
- ΔU = Q-W.................... Equation 1
Where:
- ΔU = Change in internal energy
- Q = Heat absorbed from the surroundings
- W = work done by the system
From the question,
Given:
Substitute these values into equation 1
Hence, The change in the internal energy of the system is 110 kJ.
Learn more about change in internal energy here: brainly.com/question/4654659
Answer:
The answer is the option a.
Explanation:
We know that magnetic force (Fm) is defined as
Fm = q (v x B)
Where q is a the value of the charge, v is the velocity of the charge and B is the value of the magnetic field.
"v x B" is defined as the cross product between the vectors velocity and magnetic field, and if the angle between them is thetha < 180°, then, the cross product is
v x B = vBsin (thetha)
So,
Fm = qvBsin (thetha)
And, in case in which v and B are parallel vectors, thetha is zero, and,
sin (thetha)=sin (0) = 0
So, Fm=0
Answer:
1. False
2. True
3. True
Explanation:
1- False —> The relation between electric potential and electric field is given such that

Therefore, for a uniform E field, electric potential is linearly proportional to the distance.
2- True —> The electric field lines always cross the equipotential lines perpendicularly.
3- True —> In order to be a potential difference, one source of electric field is enough. The electric potential will decrease radially according to the following formula:

There is no test charge in the formula, only the source charge. Even when there is no test charge, the potential difference between points in space can exist.