<span>global wind patterns, rotation of the earth, shape of ocean basins.</span>
The average kinetic energy of translation of oxygen molecules in the gas is 5.05 × 10⁻²¹
The given data is
n = 2
v = 20
P = 92
K.E = 3 / 2 KbT
= 3 / 2 PV / N
= 3 / 2 Pv / nNa
K.E = 3 / 2 × 9 × 1.013 × 10⁵ × 20 × 10⁻³ / 2 × 6.022 × 10²³
K. E = 5.05 × 10⁻²¹ J
<h3>Average kinetic energy</h3>
The average kinetic energy (K) is equal to one half of the mass of each gas molecule times the RMS speed squared
Hence, the average kinetic energy is 5.05 × 10⁻²¹ J
Learn more about the average kinetic energy on
brainly.com/question/3249165
#SPJ4
Answer:
They erected scientific equipment, made precise observations of conditions on the lunar surface, and collected samples of the Moon's soil and rocks.
Explanation:
i hope it is right im really sorry if its not
Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 98.08 392.18
2Cr + 3H₂SO₄ ⟶ Cr₂(SO₄)₃ + 3H₂
To solve the stoichiometry problem, you must
- Use the molar mass of H₂SO₄ to convert the mass of H₂SO₄ to moles of H₂SO₄
- Use the molar ratio to convert moles of H₂SO₄ to moles of Cr₂(SO₄)₃
- Use the molar mass of Cr₂(SO₄)₃ to convert moles of Cr₂(SO₄)₃ to mass of Cr₂(SO₄)₃
a) Mass of Cr₂(SO₄)₃
(i) Mass of pure H₂SO₄

(ii) Moles of H₂SO₄

(iii) Moles of Cr₂(SO₄)₃
The molar ratio is 1 mol Cr₂(SO₄)₃:3 mol H₂SO₄

(iv) Mass of Cr₂(SO₄)₃

b) Percentage yield
It is impossible to get a yield of 485.9 g. I will assume you meant 185.9 g.

By increasing Atomic number