Answer:
4.9cm or 4.90cm
Explanation:
Use column method and align the numbers. Make sure you add the decimal point before you write the answer, otherwise the value would be wrong.
The lateral line is a system of sense organs found in aquatic vertebrates, used to detect movement, vibration, and pressure gradients in the surrounding water. ... For example, fish can use their lateral line system to follow the vortices produced by fleeing prey
In here Oxygen is the central atom. It makes two bonds with
Cl and has two lone pairs. Since, the shape is bent and the hybridization is
sp3. Molecular geometry is a bit dissimilar from hybridization. Hybridization
is reliant on the number of bonds and lone pairs. Since O has two bonds with
Cl, its hybridization is sp3. It is like is this: 1 lone pair/bond = s. 2 lone
pairs/bond = sp 3 lone pairs/bonds = sp2, etc. molecular geometry, you count
the number of bonds and lone pairs. This has two bonds and 2 lone pairs so if
they were all bonds, the molecule would be tetrahedral.
Answer is in picture below.
Use 100 grams of the compound:
ω(Cl) = 85.5% ÷ 100%.
ω(Cl) = 0.855; mass percentage of the chlorine in the compound.
m(Cl) = 0.855 · 100 g.
m(Cl) = 85.5 g; mass of chlorine.
m(C) = 100 g - 85.5 g.
m(C) = 14.5 g; mass of carbon.
n(Cl) = m(Cl) ÷ M(Cl).
n(Cl) = 85.5 g ÷ 35.45 g/mol.
n(Cl) = 2.41 mol; amount of chlorine.
n(C) = 14.5 g ÷ 12 g/mol.
n(C) = 1.21 mol; amount of carbon.
n(Cl) : n(C) = 2.41 mol : 1.21 mol = 2 : 1.
This compound is dichlorocarbene CCl₂.
Answer is: the percent by mass of NaHCO₃ is 2,43%.
m(NaHCO₃) = 10 g.
V(H₂O) = 400 ml.
d(H₂O) = 1 g/ml.
m(H₂O) = V(H₂O) · d(H₂O).
m(H₂O) = 400 ml · 1 g/ml.
m(H₂O) = 400 g.
m(solution) = m(H₂O) + m(NaHCO₃).
m(solution) = 400 g + 10 g.
m(solution) = 410 g.
ω(NaHCO₃) = 10 g ÷ 410 g · 100%.
ω(NaHCO₃) = 2,43 %