You will need the equation PV = nRT
P = Pressure in kPa
V = Volume in L
n = moles
R = 8.314 (constant)
T = Temperature in Kelvin
First convert 2.5 atm into kPa:
2.5 X 101.3 = 253.25 kPa
Convert 125 Celsius into Kelvin:
125 + 273 = 398 K
Convert Gallons to Litres:
1.25 X 3.79 = 4.74 L
Plug your values into the equation to solve for n:
(253.25)(4.74) = n(8.314)(398)
n = (253.25)(4.74)/(8.314)(398)
n = 0.362 moles
Now use M = m/n to solve for the mass of O2
M = Molar Mass
M = mass
n= moles
32 = m/(0.362)
m = (32)(0.362)
m = 11.58g
There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength
Answer:
C
Explanation:
Pressure it says it in the name its the force of colliding particles