Answer:
2.32 liters
Explanation:
you would just divide 24 by 3 which is 8 and multiply 290 by it which is 2320 and divide by 1000 which is 2.32
Answer:
Explanation:
Both Diet Soda and regular soda contain sweeteners.
When a solute is dissolved in solution, the solution undergoes *freezing point depression* it freezing point reduces. The magnitude of freezing point depression is directly proportional to the amount of solute in a solution.
Since soda Both regular or diet soda contains more solute than water , their freezing point is will consequently be lower than water
1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
Answer:
2M
Explanation:
M=mol/L
1. Find moles of CoCl2
mass of substance/molar mass = 130/129.833 = 1.001 mol
3. Substitute in molarity equation
M=(1.001/0.5)
M= around 2M
Evaporation happens<span> when atoms or </span>molecules<span> escape from the liquid and turn into a vapor. Not all of the </span>molecules in a liquid have the same energy. <span>Sometimes a </span>liquid<span> can be sitting in one place (maybe a puddle) and its molecules will become a </span>gas<span>. That's the process called </span>evaporation<span>. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. You probably remember that when matter has a higher temperature, the molecules have a higher </span>energy<span>. When the energy in specific molecules reaches a certain level, they can have a </span>phase change<span>. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues. </span>