Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
independent variable -- different batteries
dependent variable -- the time that clock stop
Explanation:
In an experiment or a research study, there are two type of variables that can affect the result of the experiment or the conclusion. They are independent variable and the dependent variable.
An independent variable may be defined as that variable in an experiment which can be changed or can be controlled in the scientific experiment in order to test the effect on the dependent variable. It cannot be changed by other variables.
On the other hand, dependent variable are those are those which can be altered or change that can affect the experiment.
In the context, Emily uses the different types of the batteries as an independent variable and the time where the clock stopped in the dependent variable in her research.
Answer:
the changing tempure in rocks causing it to back apart
Answer:
B
Explanation:
The gravity accelleration values are the same for both planets.
Because the rate at which water vapour condenses gets increase slowly to get equal to the rate of evaporation of the water.
Explanation:
When a bottle is partly filled with liquid water is leaves space for vapours to escape and get condensed equally.
When sealed and kept below the lamp the rate of condensation increases due to the empty space in the bottle for getting vapours cool down.
A point arrives when evaporation equates the condensation of the liquid in bottle becomes stable because vapours cannot pass the bottle eventually condense and become liquid.