To convert boiling water to steam, that would involve heat of vaporization. The heat of vaporization for water at atmospheric conditions is: ΔHvap = <span>2260 J/g.
Molar mass of water = 18 g/mol
Q = m</span>ΔHvap = (1.50 mol water)(18 g/mol)(<span>2260 J/g) = 61,020 J
Time = Q/Rate = (61,020 J)(1 s/20 J) = 3051 seconds
In order to express the answer in three significant units, let's convert that to minutes.
Time = 3051 s * 1min/30 s = <em>102 min</em></span>
173.1f is the answer I believe, please let me know if I'm wrong then I would try to make up for it
Answer:
1. C4H8 + 6O2 -----> 4CO2 + 4H20
2. 3836.77 kcal
Explanation:
1. Balanced equation for the complete combustion of cyclobutane:
C4H8 + 6O2 -----> 4CO2 + 4H20
2. Heat of combustion of cyclobutane = 650.3 kcal/mol
Molecular weight of cyclobutane, C4H8 = 56.1 g/mol
Mole of C4H8 : mass of cyclobutane/Molecular weight of cyclobutane
Mole of C4H8 = 331/56.1 = 5.9 mol
Energy released during combustion = 5.9 mol × 650.3 kcal/mol = 3836.77kcal
Therefore the energythat is released during the complete combustion of 331 grams of cyclobutane is 3836.77kcal
Answer:
D.
Explanation:
In Chemistry, electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.
Valence electrons can be defined as the number of electrons present in the outermost shell of an atom. Valence electrons are used to determine whether an atom or group of elements found in a periodic table can bond with others. Thus, this property is typically used to determine the chemical properties of elements.
Oxygen has a total number of eight (8) electrons and as such the
is able to gain (receive) two (2) more electrons in order to have the same electron arrangements as the noble gas i.e an atom of neon that has a total number of ten (10) electrons.
Hence,
contains the same number of electrons as an atom of neon.