Answer:
c. The N2 molecules collide more frequently with the walls of the flask than do the Ar atoms.
Explanation:
The statements are:
a. There are more molecules of N2 present than atoms of Ar. <em>FALSE</em>. Because 1 mol of molecules of N2 = 28g and 1 mol of molecules of Ar = 40g. As there are equal MASSES, you will have more molecules of N2 than Ar molecules
b. The pressure is greater in the Ar flask. <em>FALSE</em>
Because pressure is directly proportional to amount of molecules. As molecules N2 > Molecules Ar. The pressure is greater in N2 flask
c. The N2 molecules collide more frequently with the walls of the flask than do the Ar atoms. <em>TRUE</em>
The collision probability of N2 is higher because there are more molecules presents
It causes earthquakes. I hope this helps you :]
<span>First we need to find the energy of one photon with a wavelength of 589 nm.
E = hc / wavelength
E = (6.63 x 10^{-34} J s)(3 x 10^8 m/s) / (589 x 10^{-9} m)
E = 3.3769 x 10^{-19} Joules
To find N, the number of photons, we need to divide the total energy by the energy of each photon.
N = 623000 J / 3.3769 x 10^{-19} Joules
N = 1.84 x 10^{24} photons
There are 1.84 x 10^{24} photons in the burst of yellow light.</span>