Answer:

Explanation:
Hello,
The six-carbon benzene ring contains two types of bonds: C-C and C-H bonds, that are
-hybridized σ bonds, and the six π bonds that form the aromatic ring. The σ bonds form from one
orbital and two
orbitals from each carbon, which then bond the carbon to the two carbons on either side and the carbon's single hydrogen. The remaining
orbital from each carbon atom sticks out above and below the plane of the ring; these
orbitals overlap sideways, rather than lengthwise, to form the aromatic π bond system.
Best regards.
Answer:
A volcanic eruption occurs when molten rock, ash and steam pour through a vent in the earth's crust. Volcanoes are described as active (in eruption), dormant (not erupting at the present time), or extinct (having ceased eruption; no longer active).
Please mark as brainliest please
<span>These values also increase from the
bottom to the top of a group because the size of the atom decreases, resulting
in a smaller distance between the nucleus and the valence electron shell, which
increases the attraction between the protons and electrons.</span>
An exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy),[1] indicating a spontaneous reaction. For processes that take place under constant pressure and temperature conditions, the Gibbs free energy is used whereas the Helmholtz energy is used for processes that take place under constant volume and temperature conditions.
Symbolically, the release of free energy, G, in an exergonic reaction (at constant pressure and temperature) is denoted as
{\displaystyle \Delta G=G_{\rm {products}}-G_{\rm {reactants}}<0.\,}
Although exergonic reactions are said to occur spontaneously, this does not imply that the reaction will take place at an observable rate. For instance, the disproportionation of hydrogen peroxide is very slow in the absence of a suitable catalyst. It has been suggested that eager would be a more intuitive term in this context.[2]
More generally, the terms exergonic and endergonic relate to the free energy change in any process, not just chemical reactions. An example of an exergonic reaction is cellular respiration. This relates to the degrees of freedom as a consequence of entropy, the temperature, and the difference in heat released or absorbed.
By contrast, the terms exothermic and endothermic relate to the overall exchange of heat during a process