The molar mass is usually referred to with
M
, while the mass is referred to as
m
. The amount of substance is
n
. This gives you the following relationship:
=
M
=
m
n
Since you have given (C3H8)=11 g
m
(
C
3
H
8
)
=
11
g
and you already looked up (C3H8)=44.1 gmol−1
M
(
C
3
H
8
)
=
44.1
g
m
o
l
−
1
, you can use this formula to determine (C3H8)
n
(
C
3
H
8
)
.
In this question it is quite hard to explain the use of significant figures. Those are used to imply a certain inaccuracy. Not enough information is given by the question, as of how accurate the measurement is. It is a mere exercise of converting one property into another. Here you should not worry about it.
Answer:
The answer is 2,3-dimethylbutan-2-ol and the structure is attached below.
Explanation:
Although we are not provided with ¹H-NMR spectrum and IR spectrum but still we can elucidate the ¹³C-NMR data and finalize a plausible structure.
First of all we look at the molecular formula, we can conclude from the formula that the structure given is saturated in nature because the hydrogen deficiency index of this formula is zero. Hence, we can say that there is no double bond either between Carbon atoms or between carbon and oxygen atom. This can also be proved by the absence of peaks in downfield as unsaturated compounds and carbonyl compounds give value above 100 and 200 ppm respectively.
Secondly, we can also conclude that among the six carbon atom two pairs of them are having same electronic environment because we are having only 4 signals hence we can conclude that two pairs have same chemical shift values.
Also, after making every possinble isomer of given molecular formula the structure of 2,3-dimethylbutan-2-ol was found to be the most accurate structure.
1. Only particles in the solid state are not in motion 2. The particles of a solid have less energy than gas 3. In a glass of iced tea the sugar in iced tea are the solvent and the water is the solute.
Answer:


Explanation:
Hello.
In this case, the first step is to compute the moles of nitrogen and oxygen given their initial P, T and V conditions via the ideal gas equation:

After that, since the total volume now, once the mixture is formed is the addition between the initial volumes (12.0 L + 24.0 L) is 36.0 L, the partial pressure of each gas turns out:

Thus, the final total pressure is:

Best regards.