<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
<span>the first major step for the dan replication to take place is the breaking of hydrogen bonds between bases of the two antiparallel strands </span>
Answer:
Monatomic molecule
Explanation:
Each helium atom has 2 electrons, which is already the maximum no. of electrons that can fit in the first electron shell. When the outermost electron shell is full (2 for the first layer, 8 for others), the atom is stable.
Helium atom itself is already stable, so it doesn't need to combine with another helium atom to form a molecule, hence we call it monatomic.
Azeotropic mixture. I think