An exothermic reaction releases heat. An endothermic reaction absorbs heat. Burning gas releases heat so it would be exothermic. Acid and water react heating the beaker would be exothermic because it releases heat from the reaction. Hope this helps! ;)
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
Answer: Option (a) is the correct answer.
Explanation:
A protein part of an enzyme is known as an apoenzyme. An apoenzyme combines with a cofactor, it is known as holoenzyme.
Without a cofactor an apoenzyme cannot function as cofactor helps in the formation of an active enzyme system and provides a specific site on enzyme for the substrate.
Whereas a non-protein chemical compound or metal ion that helps in the activity of enzyme as a catalyst is known as a cofactor. A metal ion cofactor can be bound directly to the enzyme or to a coenzyme.
The organic non-protein molecules which bind to the protein molecule to form an active enzyme is known as a coenzyme. Coenzymes are small size molecules which help the enzymes to act as a catalyst.
Therefore, we can conclude that the statement an apoenzyme can catalyze its reaction without its cofactor, is false.
1) An example of a compound machine could be a pair of Scissors. Their are two different simple machines in the Scissors which make up the compound machine. Both of them being a Lever, and a Fulcrum.
Hope this helps!
Answer:
Therefore we can say that the total number of electrons present in $ p - $ orbital of chlorine atoms is eleven.
Explanation: