1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
3 years ago
10

How do you calculate the braking distance

Physics
1 answer:
Anettt [7]3 years ago
6 0

The braking distance is given by s=\frac{-u^2}{2a}

Explanation:

When the driver of a car hits the pedal of the brakes, the car starts decelerating until it stops. Assuming the deceleration is constant, then the motion is a uniformly accelerated motion, so we can use the following suvat equation:

v^2-u^2=2as

where

u is the initial speed of the car

v is the final speed of the car, which is zero because the car comes to rest:

v = 0

a is the acceleration of the car

s is the distance travelled by the car during the deceleration, so it is the braking distance

Therefore, re-arranging the equation for s, we find an expression for the braking distance:

s=\frac{-u^2}{2a}

Note that the sign of a is negative since the car is decelerating, therefore the final sign of s is positive.

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

You might be interested in
3. Christina is on her college softball team, and she is practicing swinging the bat. Her coach wants her to work on the speed a
inessss [21]

Answer:

The average angular acceleration is  \alpha =125.487 rad /s^2

Explanation:

From the question we are told that

  From the question we are told that

        The length of the bat is l = 0.85m  \

         The initial linear velocity is  u = 0 m/s

         The time is  t = 0.15s

         The velocity at t is  v = 16 m/s

  Generally average  angular acceleration is mathematically represented as

                \alpha  = \frac{w_f - w_o}{t}

        Where w_f is the finial angular velocity which is mathematically evaluated as  

            w_f = \frac{v}{l}

                  w_f = \frac{16}{0.85}

                        = 18.823 rad/s

 and w_o is the initial angular velocity which is zero since initial linear velocity is zero

               So

                         \alpha  = \frac{18.823 - 0}{0.15}

                               \alpha =125.487 rad /s^2

5 0
3 years ago
During a tennis volley, a ball that arrives at a player at 40 m/s is struck by the racquet and returned at 40 m/s. The other pla
Butoxors [25]

Answer:Racquet force is twice of Player force

Explanation:

Given

ball arrives at a speed of u=-40\ m/s

ball returned with speed of v=40\ m/s

average Force imparted by racquet on the ball is given by

F_{racquet}=\frac{m(v-u)}{\Delta t}

where m=mass\ of\ ball

\Delta t=time of contact of ball with racquet

F_{racquet}=\frac{m(40-(-40))}{\Delta t}

F_{racquet}=\frac{80m}{\Delta t}-----1

When it land on the player hand its final velocity becomes zero and time of contact is same as of racquet

F_{player}=\frac{m(0-40)}{\Delta t}

F_{player}=\frac{-40m}{\Delta t}-----2

From 1 and 2 we get

F_{racquet}=-2F_{player}

Hence the magnitude of Force by racquet is twice the Force by player

5 0
3 years ago
A space probe is fired as a projectile from the Earth's surface with an initial speed of 2.05 104 m/s. What will its speed be wh
Elanso [62]

Answer:

The value is  v  =  2.3359 *10^{4} \ m/s

Explanation:

From the question we are told that

  The  initial speed is u =  2.05 *10^{4} \  m/s

 Generally the total energy possessed by the space probe when on earth is mathematically represented as

             T__{E}} =  KE__{i}} +  KE__{e}}

Here  KE_i is the kinetic energy of the space probe due to its initial speed which is mathematically represented as

          KE_i =   \frac{1}{2}  *  m  *  u^2

=>       KE_i =   \frac{1}{2}  *  m  *  (2.05 *10^{4})^2

=>       KE_i =  2.101 *10^{8} \ \ m \ \ J

And  KE_e is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

       KE_e =  \frac{1}{2}  *  m *  v_e^2

Here v_e is the escape velocity from earth which has a value v_e =  11.2 *10^{3} \  m/s

=>    KE_e =  \frac{1}{2}  *  m *  (11.3 *10^{3})^2

=>    KE_e =  6.272 *10^{7} \  \  m  \ \   J

Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

        KE_p =  \frac{1}{2}  *  m *  v^2

Generally from the law energy conservation we have that

        T__{E}} =  KE_p

So

       2.101 *10^{8}  m  +  6.272 *10^{7}  m  =   \frac{1}{2}  *  m *  v^2

=>     5.4564 *10^{8} =   v^2

=>     v =  \sqrt{5.4564 *10^{8}}

=>     v  =  2.3359 *10^{4} \ m/s

4 0
3 years ago
The minimum cooking temperature for eggs that will be served immediately is
solong [7]
Cooking and Serving. Cook raw shell eggs that are broken for immediate preparation and service to heat all parts of the food to a temperature of 63°C<span> (</span>145°F<span>) for 15 seconds</span>
5 0
3 years ago
Read 2 more answers
Which best describes how combustion works?
jekas [21]
The answer is A, it breaks down and releases thermal energy. 
3 0
3 years ago
Read 2 more answers
Other questions:
  • A) Find the wavelength of an electromagnetic wave with frequency 9.35 GHz = 9.35 109 Hz (G = giga = 109), which is in the microw
    9·1 answer
  • I need an answer asap
    11·1 answer
  • . A student claims that if lighting strikes a metal flagpole, the force exerted by the Earth’s magnetic field on the current in
    6·1 answer
  • A 0.12 g honeybee acquires a charge of +24pC while flying. The earth's electric field near the surface is typically 100 N/C, dow
    8·1 answer
  • If the earth can travel 1800 km in 1 minute what is it’s speed in km/s
    14·1 answer
  • 3.4.3 Quiz: Buoyancy
    8·1 answer
  • Which of the following describes a protective put?
    7·1 answer
  • Umar has two copper pans, each containing 500cm3 of water. Pan A has a mass of 750g and pan B has a mass of 1.5kg. Which pan wil
    12·1 answer
  • A moving electron passes near the nucleus of a gold atom, which contains 79 protons and 118 neutrons. At a particular moment the
    10·1 answer
  • Sound waves rely on matter to transmit their energy. They cannot ravel in a vacuum. True or false
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!