Answer:
Change in the shape size volume and state of a substance
When a solid is heated, it turns into a liquid. As a liquid, a substance has a fixed volume, but its shape changes to fill the shape of its container. For instance, a glass of water is the liquid state of water. ... Gas expands to fill the shape and volume of its container.
Explanation:
Answer:
I think it is better if you read and shortly write my explanation
Explanation:
simple pendulum with no friction, mechanical energy is conserved. Total mechanical energy is a combination of kinetic energy and gravitational potential energy. As the pendulum swings back and forth, there is a constant exchange between kinetic energy and gravitational potential energy.
Answer:
(a) 0.613 m
(b) 0.385 m
(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s
v = 3.68 m/s², θ = 72.6° below the horizontal
Explanation:
(a) Take down to be positive.
Given in the y direction:
v₀ = 0 m/s
a = 10 m/s²
t = 0.350 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²
Δy = 0.613 m
(b) Given in the x direction:
v₀ = 1.10 m/s
a = 0 m/s²
t = 0.350 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²
Δx = 0.385 m
(c) Find: vₓ and vᵧ
vₓ = aₓt + v₀ₓ
vₓ = (0 m/s²) (0.350 s) + 1.10 m/s
vₓ = 1.10 m/s
vᵧ = aᵧt + v₀ᵧ
vᵧ = (10 m/s²) (0.350 s) + 0 m/s
vᵧ = 3.50 m/s
The magnitude is:
v² = vₓ² + vᵧ²
v = 3.68 m/s²
The direction is:
θ = atan(vᵧ / vₓ)
θ = 72.6° below the horizontal
Answer:
The bottom/center of the pendulum
Explanation:
As it swings, the pendulum will have maximum potential energy at the top of its arc.
As it comes back towards the center that potential energy will convert into kinetic energy until it reaches the middle of its swing (when the pendulum is fully vertical) where all potential energy has been converted into kinetic energy.
This is when the kinetic energy is the highest
As it begins to move away from the center of its arc, that kinetic energy will convert into potential energy again, and the process repeats