Answer:Increase by a factor of 25
Explanation:
We know that magnetic force is proportional to
where r is the distance between them
Thus
Where
=magnetic field
If distance is reduced by a factor of
then force must increase by a factor of
because
so
An inclined plane decreases the amount of force needed to move an object but increases the distance the onject needs to be moved. Since work = distance x force, whe amount of work stays the same.
Answer:
Explanation:
To get the person Moving you have to overcome the static (means not moving) friction coefficient. U(static)
To get the person going at the same speed you have to overcome the kinetic friction coefficient. U(Kinetic)
Force to get him moving is 198 N. Force = ma = U(static)Mg
combining the 2 equations you get 198N = U(static)* 55kg *9.8m/s^2 Solve for U(static)
Same equation to keep him moving except with the dynamic force and the dynamic U
175N= U(kinetic)*55kg*9.8m/s^2 Solve (U dynamic)
A star with greater mass will die out faster than the Sun.
<h3>What factors star is dependent on?</h3>
A star's future relies upon its mass. For the most part, the more huge the star, the quicker it consumes its fuel supply, and the more limited its life. The most huge stars can wear out and detonate in a cosmic explosion after two or three million years of combination.
Our Sun is a typical estimated star: there are more modest stars and bigger stars, even up to multiple times bigger. Numerous other planetary groups have different suns, while our own simply has one. The Sun is made for the most part out of hydrogen and helium gas.
In this manner, one correlation in the occasions in the existence of the Sun with those of a star that beginnings with a mass multiple times more prominent than the Sun's is a star that has a more noteworthy mass will vanish quicker.
Learn more about Star.
brainly.com/question/21458024
#SPJ1
Answer:
gravitational potential energy.
Explanation:
Gravitational potential energy (GPE) can be defined as an energy possessed by an object or body due to its position above the earth surface.
Mathematically, gravitational potential energy is given by the formula;

Where,
G.P.E represents gravitational potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
This ultimately implies that, anytime there is height, the object must have gravitational potential energy.
Hence, an object possesses gravitational potential energy due to its height (position) and the earth's gravitational force.