Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
Carbon tetrahydride is B. CH4
The addition of any numbers of vector provide the magnitude as well as the direction of the resultant vector, hence the mentioned first option is not true.
The addition of vector required to connect the head of the one vector with the tail of the other vector and any vector can be moved in the plane parallet to the previous location, so, the mentioned second and third options are true.
The process that produces the energy radiated by stars is nuclear fusion in the core.
For a star on the main sequence, it's the fusion of hydrogen nuclei into helium.