Answer:
The distance from the radio station is 0.28 light years away.
Solution:
As per the question:
Distance, d = 4 ly
Frequency of the radio station, f = 854 kHz = 
Power, P = 50 kW = 

Now,
From the relation:
P = nhf
where
n = no. of photons/second
h = Planck's constant
f = frequency
Now,

Area of the sphere, A = 
Now,
Suppose the distance from the radio station be 'r' from where the intensity of the photon is 



Now,
We know that:
1 ly = 
Thus

D) decreasing the temperature lowers the average kinetic energy of the reactants.
At rest because if the distance is not changing, then it is not moving any further, so it must not be moving! The time keeps going no matter what, so the distance, whether it is 0 m or 10,000 km, if the y is horizontal the distance does not change.
1. a. longitudinal waves.
There are two types of waves:
- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave
- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.
So, these types of waves are called longitudinal waves.
2. d. a medium
There are two types of waves:
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium
3. a. AM/FM radio
Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.