6.02 x 1023 atoms weigh out 63.55 grams copper.
No. of Molecules in water = 3.5mole x (6.02 x 10^23) molecules/mole = 2.107 x 10^24 molecules of H2O
Answer:
Phosphagen provides the needed energy for the muscle tissues which can not be immediately supplied by glycolysis or oxidative phosphorylation. They supply immediate but limited energy as sudden demands for lots of energy by the muscle tissues arise.
Explanation:
Phosphagens are high energy storage compounds majorly found in muscular tissue of animals.
They allow maintenance of the high energy phosphate stores in its normal concentration ranges which discard the problems associated with ATP-consuming reactions in these tissues as against the presence of adenosine triphosphate.
The muscle tissues are actively working and need constant supply of energy and the energy produced by glycolysis and oxidative phosphorylation might not sum up to the needs of the tissues. So therefore, phosphagens serve as a stand by mechanism for energy production for the tissues mostly during sustained muscle activity.
The man, the muscle cells' phosphocreatinine concentration is more than three times the concentration of ATP and represent a ready reserve of high energy phosphate that can be donated directly to Adenosine diphosohate to release energy.
Different organisms use different biomolecule as a phosphagen. Majority of animals use arginine as their phosphagen, chordates use creatinine, annelids use lombricine.
They all perform these similar functions described above.
Answer:
Explanation:
Molarity is found by dividing the moles of solute by liters of solution.
We are given grams of a compound and milliliters of solution, so we must make 2 conversions.
1. Gram to Moles
We must use the molar mass. First, use the Periodic Table to find the molar masses of the individual elements.
- C: 12.011 g/mol
- H: 1.008 g/mol
- O: 15.999 g/mol
Next, look at the formula and note the subscripts. This tells us the number of atoms in 1 molecule. We multiply the molar mass of each element by its subscript.
6(12.011)+12(1.008)+6(15.999)=180.156 g/mol
Use this number as a ratio.
Multiply by the given number of grams.
Flip the fraction and divide.
2. Milliliters to Liters
There are 1000 milliliters in 1 liter.
Multiply by 2500 mL.
3. Calculate Molarity
Finally, divide the moles by the liters.
The original measurement has 2 significant figures, so our answer must have the same. That is the hundredth place and the 3 tells us to leave the 7.
1 mole per liter is also equal to 1 M.
D) Its position changes because the unbalanced forces move the object.
Answer:
C) ball rollinflown a hill
Explanation:
The question asks to identify the endothermic process in the list of options. By way of elimination, we have;
A) condensation of water on a wind shield of a car
Condensation is an exothermic process. That is, heat is given out as the gases change into the liquid state of matter.
B) formation of copper
This is an exothermic process. Capture of electrons by a cation is always exothermic.
C) ball rollinflown a hill
This is the correct option. Energy is absorbed by the ball as it moves on the hill
D) formation of ice from liquid water
Freezing is an example of exothermic reaction. Heat is given off to the surroundings.
E) oxide from copper and oxygen
Formation of metal oxides and most reactions involving oxygen are exothermic reactions,