1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
3 years ago
14

Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Give

n the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10−12C/(V⋅m) for the permittivity of space and c=3.00×108m/s for the speed of light.
Physics
1 answer:
Keith_Richards [23]3 years ago
4 0

Complete Question

A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,000 km above the surface of the earth, and we assume it has an isotropic power output of 1 kW (although, in practice, satellite antennas transmit signals that are less powerful but more directional).

Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10^−12C/(V⋅m) for the permittivity of space and c=3.00×10^8m/s for the speed of light.

Answer:

The electric field vector of the satellite broadcast as measured at the surface of the earth is  E_o = 6.995 *10^{-6} \ V/m

Explanation:

From the question we are told that

     The height of the satellite is  r  = 35000 \ km  =  3.5*10^{7} \ m

      The power output of the satellite is P  = 1 \ KW  =  1000 \ W

       

Generally the intensity of the electromagnetic radiation of the satellite at the surface of the earth is  mathematically represented as  

     I  =  \frac{P}{4 \pi r^2}

substituting values

      I  =  \frac{1000}{4 * 3.142 (3.5*10^{7})^2}

      I  = 6.495*10^{-14} \  W/m^2

This intensity of the electromagnetic radiation of the satellite at the surface of the earth can also be   mathematically represented as  

          I  =  c * \epsilon_o * E_o^2

Where E_o is the amplitude of the electric field vector of the satellite broadcast so

         E_o =  \sqrt{\frac{2 * I}{c * \epsilon _o} }

substituting values

          E_o =  \sqrt{\frac{2 * 6.495 *10^{-14}}{3.0 *10^{8} * 8.85*10^{-12}} }

           E_o = 6.995 *10^{-6} \ V/m

 

   

You might be interested in
How many planets in the solar system
Nataliya [291]

Answer:

There are eight planets in our Solar System.

Explanation:

7 0
3 years ago
Read 2 more answers
Consider the circuit below, which is powered by a 6-v battery. switch s is opened at t = 0 after having been closed for a long t
Semmy [17]
The answer should be B 
3 0
3 years ago
Examples of applied force
Vladimir [108]

Answer:

Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)

Pull - You can apply a force by directly pulling on an object (like pulling a wagon)

Explanation:

4 0
3 years ago
Read 2 more answers
IF YOUR GOOD AT SCIENCE THEN PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST
Digiron [165]

Answer:

This is an open circuit

Explanation:

An open circuit I believe

It needs to be closed for the bulb to be turned on

8 0
2 years ago
Can someone please help me out with this quiz will give brainiest and thanks to people
Virty [35]

Answer:

Energy transferred = 28.8 Joules.

1. Energy transferred = 144 Joules.

2. The unit of potential difference, volts can also be described as Joules per Coulombs.

3. Current, I = 6.945 Amperes.  

Explanation:

<u>Part A.</u>

Given the following data;

Current, I = 1.2A

Time, t = 2 minutes

Potential difference, V = 12 volts.

To find the energy transfered;

Energy transferred = charge moved * potential difference

E = Q * V

Substituting into the equation, we have;

Energy transferred = (1.2 * 2) * 12

Energy transferred = 2.4 * 12

Energy transferred = 28.8 Joules.

<u>Part B.</u>

1. <em><u>Given the following data;</u></em>

Charge, Q = 24C

Potential difference = 6V

To find the energy transferred;

E = Q * V

Substituting into the equation, we have;

E = 24 * 6

E = 144 Joules.

2. Since we know that, Energy transferred = charge moved * potential difference

Potential \; difference = \frac {Energy \; transferred}{Charged \; moved}

The units of energy is Joules while the unit of the quantity of charge moved is Coulomb.

Therefore, the unit of potential difference becomes Joules per Coulomb.

3. <em><u>Given the following data;</u></em>

Potential difference = 18V

Energy transferred = 500J

Time, t = 4 minutes.

To find the current;

E = Q * V

Substituting into the equation, we have;

500 = Q*18

Q = 500/18

Q = 27.78C

But, Charge moved (Q) = current (I) * time (t)

Current, I = Q/t

Substituting into the equation, we have;

Current, I = 27.78/4

Current, I = 6.945 Amperes..

3 0
3 years ago
Other questions:
  • Which of the following BEST explains why stability is an important skill for athletes?
    6·2 answers
  • A spherical inflated balloon is submerged in a pool of water. if it is further inflated so that its radius doubles, how is the b
    11·1 answer
  • A dart is loaded into a spring-loaded toy dart gun by pushing the spring in by a distance d. For the next loading, the spring is
    6·1 answer
  • What are five of the most important things you learned in physics? ASAP
    9·1 answer
  • You walk 4.5 km in one direction then make a 45 degree turn to the right and walk another 6.4 km what is the magnitude of your d
    14·1 answer
  • Joe and Bill throw identical balls vertically upward. Joe throws his ball with an initial speed twice as high as Bill. If there
    14·1 answer
  • Comon help me out here
    14·1 answer
  • A student is considering doing a complete repeated measures design experiment involving motor skills. The student's advisor has
    14·1 answer
  • What happens when the fuel in a car engine combustion?​
    7·1 answer
  • How long will it take Matthew to jog 321 m at 5.8m/s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!