Answer:
a) velocity v = 322.5m/s
b) time t = 19.27s
Explanation:
Note that;
ads = vdv
where
a is acceleration
s is distance
v is velocity
Given;
a = 6 + 0.02s
so,

Remember that
![v = \frac{ds}{dt} \\\frac{ds}{v} = dt\\\int\limits^s_0 {\frac{ds}{\sqrt{12s+0.02s^{2} } } } \, ds = \int\limits^t_0 {} \, dt \\t= (5\sqrt{2} ) ln \frac{| [s + 300 + \sqrt{(s^{2} + 600s)} ] |}{300} .......2](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bds%7D%7Bdt%7D%20%5C%5C%5Cfrac%7Bds%7D%7Bv%7D%20%3D%20dt%5C%5C%5Cint%5Climits%5Es_0%20%7B%5Cfrac%7Bds%7D%7B%5Csqrt%7B12s%2B0.02s%5E%7B2%7D%20%7D%20%7D%20%7D%20%5C%2C%20ds%20%3D%20%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt%20%5C%5Ct%3D%20%20%285%5Csqrt%7B2%7D%20%29%20ln%20%20%5Cfrac%7B%7C%20%5Bs%20%2B%20300%20%2B%20%5Csqrt%7B%28s%5E%7B2%7D%20%20%2B%20600s%29%7D%20%5D%20%7C%7D%7B300%7D%20.......2)
substituting s = 2km =2000m, into equation 1
v = 322.5m/s
substituting s = 2000m into equation 2
t = 19.27s
By looking at the potential energies before and after the reaction, we can tell that the reaction is exothermic (final < initial) or endodermic (final > initial).
Also, the amount of activation energy gives an idea of the external energy required to initiate the reaction (for example, by heating the reactants).
Furthermore, by the same principle, we can also deduce the activation energy for the reverse reaction.
If a catalyst is available, the diagram will show a reduced activation energy, compared to a reaction without catalyst. However, it will also show that the catalyst does not alter the initial and final energies of the reaction.
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
I think u have to do 580N times 40KG
Answer:
<em>The electric field can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.</em>
Explanation:
Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.