Answer:
The final volume is 3.07L
Explanation:
The general gas law will be used:
P1V1 /T1 = P2V2 /T2
V2 =P1 V1 T2 / P2 T1
Give the variables to the standard unit:
P1 = 345 torr = 345 /760 atm = 0.4539atm
T1 = -15°C = -15 + 273 = 258K
V1 = 3.48L
T2 = 36°C = 36+ 273 = 309K
P2 = 468 torr = 468 * 1/ 760 atm = 0.6158atm
V2 = ?
Equate the values into the gas equation, you have:
V2 = 0.4539 * 3.48 * 309 / 0.6158 * 258
V2 = 488.0877 /158.8764
V2 = 3.07
The final volume is 3.07L
The value of Kc for the thermal decomposition of H₂S is 2.2 x 10⁻⁴ at 1400 K:
2 H₂S(g) ↔ 2 H₂(g) + S₂(g)
initial 3.5 M 0 0
at equilibrium 3.5 M - 2x 2x x
Kc = [S₂][H₂]² / [H₂S]²
2.2 X 10⁻⁴ = x(2x)² / (3.5 - 2x)²
2.2 x 10⁻⁴ = 4 x³ / (3.5)² Assuming x <<<<< 3.5
x = 0.088
Thus [H₂S] = 3.324 M
Answer:
Second option - The bond is very polar
Explanation:
Electronegativity of an basically refers to the degree at which an electron is able to attract electrons to itself.
There are different types of bonds between atoms, depending on the electronegativity of the atoms.
When there is a large difference in electronegativity, it pretty much means that one atom would draw electrons more than the other. When this happens, the bond is said to be polar because there is uneven distribution of the charges.
The second option is the correct answer in thus question.
To increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
<h3>What is energy of emitted electron?</h3>
The maximum energy of an emitted electron is equal to the energy of a photon for frequency f (E = hf ), minus the energy required to eject an electron from the metal's surface, also known as work function.
Ee = E - W
<h3>Energy of the emitted electron</h3>
The energy of emitted electrons based on the research of Albert Einstein is given as;
E = hf
where;
- h is planck's constant
- f is frequency of incident light on the metal
Thus, to increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
Learn more about energy of electron here: brainly.com/question/11316046
#SPJ1
<span>There are only three stereoisomers of 1,2-dimethylcyclopentane. As there are only two chiral carbons, so the maximum number of stereoisomers is 4, but two are the same meso-compound which means that there are only 3.</span>