At equivalence there is no more HA and no more NaOH, for this particular reaction. So that means we have a beaker of NaA and H2O. The H2O contributes 1 x 10-7 M hydrogen ion and hydroxide ion. But NaA is completely soluble because group 1 ion compounds are always soluble. So NaA breaks apart in water and it just so happens to be in water. So now NaA is broken up. The Na+ doesn't change the pH but the A- does change the pH. Remember that the A anion is from a weak acid. That means it will easily attract a hydrogen ion if one is available. What do you know? The A anion is in a beaker of H+ ions! So the A- will attract H+ and become HA. When this happens, it leaves OH-, creating a basic solution, as shown below.
Answer:
The balanced equation is:
2 HNO3 + Mg ---> Mg(NO3)2 + H2
From the equation, we can see that we need twice the moles of HNO3 than the moles of Mg
Moles of Mg:
Molar mass of Mg = 24 g/mol
Moles = Given mass / Molar Mass
Moles of Mg = 4.47 / 24 = 0.18 moles (approx)
Hence, 2(moles of Mg) = 0.36 moles of HNO3 will be consumed
Number of moles of HNO3 after the reaction is finished is the number of unreacted moles of HNO3
Unreacted moles of HNO3 = Total Moles - Moles consumed
Unreacted moles of HNO3 = 0.64 moles (approx)
Since we approximated the value of moles of Mg, the value of remaining moles of HNO3 will also be approximate
From the given options, we can see that 0.632 moles is the closest value to our answer
Therefore, 0.632 moles will remain after the reaction
The answer is 3.
Explanation:
It’s the last number and it can’t be 9 because then it would be 48.9 and no 3.