Before proceeding, we should write the reaction equation to better understand what is happening:
2AgNO₃ + Na₂S → Ag₂S + 2NaNO₃
Now, we may apply the law of conservation of mass, due to which the total mass before a chemical reaction is equivalent to the total mass after a chemical reaction. Therefore:
Mass of silver nitrate + mass of sodium sulfide = mass of silver sulfide + mass of sodium nitrate
Mass of silver nitrate + 156.2 = 595.8 + 340
Mass of silver nitrate = 779.6 grams
Answer:
Your answer will be b(molten material from the outer core makes its way to the surface of earth)
Explanation:
Answer:
The answer to your question is: CH₄ + 3/2 O₂ ⇒ CO₂ + 2 H₂O
Explanation:
Methane = CH₄
Oxygen = O
Carbon dioxide = CO₂
Water = H₂O
CH₄ + 3/2 O₂ ⇒ CO₂ + 2 H₂O
This is the balanced equation
The difference in the concentration of a substance between two areas is called the concentration gradient. When a region has a higher particle concentration than another, this is known as a concentration gradient. A concentration gradient will cause particles in passive transport to diffuse down it from higher concentration to lower concentration until they are evenly spaced.
The gradual separation of a region of high density from a region of low density in a solution in terms of the concentration of a dissolved material. Understanding how ions and particles flow randomly in a solution or gas depends on the concentration gradient.
To learn more about concentration, click here.
brainly.com/question/10725862
#SPJ4
Answer:
a) Se²⁻> S²⁻ > O²
b) Te²⁻ > I- >Cs+
c) Cs+ > Ba²⁺ > Sr²⁺
Explanation:
(a) Se²⁻, S²⁻, O²⁻
In general, ionic radius decreases with increasing positive charge.
As the charge on the ion becomes more positive, there are fewer electrons.
The ion has a smaller radius. In general, ionic radius increases with increasing negative charge.
For ions of the same charge (e.g. in the same group) the size increases as we go down a group in the periodic table
Se²⁻> S²⁻ > O²
(b) Te²⁻, Cs⁺, I⁻
Te²⁻ > I- >Cs+
Te2- hast the biggest size, because of the double negative charge.
Cs+ has the smallest size since it has the most positive charge, compared to Te2- and I-.
(c) Sr²⁺, Ba²⁺, Cs⁺
Cs+ > Ba²⁺ > Sr²⁺
Cs+ has the biggest size, because its more downward (compared to Sr2+) and more to the left (compared) ot Ba2+.
Sr2+ has the smallest size because it's more upwords (compared to Cs+ and Ba2+)