This is a Wheatstone bridge, and the ratio of R2 to R1 equals the ratio of Rx to R3. As a result, if R2 is increased, R3 should be reduced by a factor of two.
<h3>Explain Wheatstone bridge?</h3>
A Wheatstone bridge is a type of electrical circuit that is used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one of which contains the unknown component.
The Wheatstone bridge circuit can be used to compare an unknown resistance RX to others of known value, such as R1 and R2, which have constant values and R3 which can be variable.
If we connected a voltmeter, ammeter, or galvanometer between points C and D, and then changed resistor R3 until the meters read zero, the two arms would be balanced, and the value of RX (substituting R4) would be known as indicated.
To learn more about Wheatstone bridge refer to :
brainly.com/question/15225070
#SPJ4
After fertilization in the fallopian tube, It will take 6-12 days for the zygote to travel before arriving at the uterus.
<h3>What is a zygote?</h3>
A zygote is, generally speaking, a cell created by the fusion of two gametes; the growing person is created from such a cell.
It takes the zygote around 6–12 days following fertilization in the fallopian tube for the fertilized egg to travel to the uterus and attach to the uterus, a process known as implantation.
Hence It will take 6-12 days for the zygote to travel before arriving at the uterus.
To learn more about the zygote refer;
brainly.com/question/465851
#SPJ1
So we want to know what is the magnitude of the horizontal component of acceleration ah if we know that the overall acceleration a=12 m/s^2 and the angle of overall acceleration and the horizontal acceleration is α=50°. We know that ah=a*cosα. So now it isn't hard to get the horizontal component: ah=12*cos50=12*0.64=7.71 m/s^2. So the correct answer is ah=7.71 m/s^2.
Answer:
maximum extent of a vibration or oscillation, measured from the position of equilibrium.
Answer:
minimum length of runway is needed for take off 243.16 m
Explanation:
Given the data in the question;
mass of glider = 700 kg
Resisting force = 3700 N one one glider
Total resisting force on both glider = 2 × 3700 N = 7400 N
maximum allowed tension = 12000 N
from the image below, as we consider both gliders as a system
Equation force in x-direction
2ma = T -f
a = T-f / 2m
we substitute
a = (12000 - 7400 ) / (2 × 700 )
a = 4600/1400
a = 3.29 m/s²
Now, let Vf be the final speed and Ui = 0 ( as starts from rest )
Vf² = Ui² + 2as
solve for s
Vf² = 0 + 2as
2as = Vf²
s = Vf² / 2a
given that take of speed for the gliders and the plane is 40 m/s
we substitute
s = (40)² / 2×3.29
s = 1600 / 6.58
s = 243.16 m
Therefore, minimum length of runway is needed for take off 243.16 m