Answer:
Meteoroid , meteor and meteorite
Explanation:
A meteoroid is a small rocky or metallic body travelling through space. Most are fragments from comets or asteroids
The visible streak of light from space debris is the result of heat as it enters a planet's atmosphere, and the trail of glowing particles that it sheds in its wake is called a meteor, or colloquially a "shooting star" or "falling star". A series of many meteors appearing seconds or minutes apart, and appearing to originate from the same fixed point in the sky, is called a meteor shower. Incoming objects larger than several meters (asteroids or comets) can explode in the air. If a meteoroid, comet or asteroid or a piece thereof withstands ablation from its atmospheric entry and impacts with the ground, then it is called a meteorite.
Answer:
76969.29 W
Explanation:
Applying,
P = F×v............. Equation 1
Where P = Power, F = force, v = velocity
But,
F = ma.......... Equation 2
Where m = mass, a = acceleration
Also,
a = (v-u)/t......... Equation 3
Given: u = 0 m/s ( from rest), v = 12.87 m/s, t = 3.47 s
Substitute these values into equation 3
a = (12.87-0)/3.47
a = 3.71 m/s²
Also Given: m = 1612 kg
Substitute into equation 2
F = 1612(3.71)
F = 5980.52 N.
Finally,
Substitute into equation 1
P = 5980.52×12.87
P = 76969.29 W
It is B, Microcephaly. Hope I helped! :))
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

by an echo meter
please flw me and thank my answers
#Genius kudi