Answer:
<span>Carbon readily forms covalent bonds with other carbon atoms.
Explanation:
As we know approximately more than 95 % compounds, either isolated, discovered or synthesized belongs to organic compounds containing carbon atoms.
This great diversity of organic compounds is due to following facts.
1) Catenation:
Carbon has a peculiar behavior of self linkage. This self linkage of one carbon with another is called as catenation. In this way carbon can form a long chain of carbon atom. A branching can also take place when one carbon is bonded further to three of four carbon atoms.
2) Isomerism:
Secondly the carbon containing compounds show isomerism. In which molecular formula is same but structural formula is different. For example molecular formula C</span>₅H₁₂ can make following compounds,
a) n-Pentane
b) 2-Methylbutane
c) 2,2-Dimethylpropane
3) Multiple Bonds:
Carbon can form multiple bonds i.e double bond like in alkenes and triple bonds like in alkyne.
Due to these factors carbon gets very high number of opportunities to form large number of compounds.
Answer:
2cm^3
Explanation:
Use the density triangle: D=MxV
Switch for variables, V=M/D
Plug in numbers, 15.8g/7.9g/cm^3=2cm^3
EASY AS PIE AND I LIKE PIE
Calcium iodide (CaI2) is an ionic bond, which means that electrons are transferred. In order for Ca to become the ion Ca2+, the calcium atom must lose 2 electrons. (Electrons have a negative charge, so when an atom loses 2 electrons, its ion becomes more positive.) In order for I to become the ion I1−, the iodine atom must gain 1 electron. (When an atom gains an electron, its ion will be more negative.) However, the formula for calcium iodide is CaI2 - there are 2 iodine ions present. This makes sense because the iodine ion has a charge of -1, so two iodine ions have to be present to cancel out the +2 charge of the calcium ion. Therefore, the calcium atom transfers 2 valence electrons, one to each iodine atom, to form the ionic bond.
IF WRONG, SORRY
Answer:

Explanation:
Hello!
In this case, since the density is computed by dividing the mass of the substance by its occupied volume (d=m/V), we first need to realize that 0.8206 g/mL is the same to 0.8206 kg/L, which means we first need to compute the volume in L:

Then, solving for the mass in d=m/V, we get m=d*V and therefore the mass of gasoline in that full tank turns out:

Best regards!
D. the potential energy of the reactants is low; the potential energy decreases gradually; then increases slightly.