Answer:
Atoms
Explanation:
Energy, potential energy, is stored in the covalent bonds holding atoms together in the form of molecules. This is often called chemical energy.
Lower fertility and longer lifespans steadily increased the potential labor force relative to the total population
Control rods are used<span> in </span>nuclear<span> reactors to </span>control<span> the fission rate of uranium and plutonium. They are composed of chemical elements such as boron, silver, indium and cadmium that are capable of absorbing many neutrons without themselves fissioning.</span>
Answer:
The correct answer is option D which is the decreasing order of conductivity is Mn, O, Ge.
Explanation:
You can easily answer this if you know the periodic trends. For the property of electrical conductivity, it decreases across a period and decreases also down a group. Thus, the most conductive element must be Mn, while the least conductive one is Ge. So, the answer is: -Mn, O, Ge
Answer:
P = 0.6815 atm
Explanation:
Pressure = 754 torr
The conversion of P(torr) to P(atm) is shown below:
So,
Pressure = 754 / 760 atm = 0.9921 atm
Temperature = 294 K
Volume = 3.1 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9921 atm × 3.1 L = n × 0.0821 L.atm/K.mol × 294 K
⇒n of helium gas= 0.1274 moles
Surface are = 1257 cm²
For a sphere, Surface area = 4 × π × r² = 1257 cm²
r² = 1257 / 4 × π ≅ 100 cm²
r = 10 cm
The volume of the sphere is :
Where, V is the volume
r is the radius
V = 4190.4762 cm³
1 cm³ = 0.001 L
So, V (max) = 4.19 L
T = 273 K
n = 0.1274 moles
Using ideal gas equation as:
PV=nRT
Applying the equation as:
P × 4.19 L = 0.1274 × 0.0821 L.atm/K.mol × 273 K
<u>P = 0.6815 atm</u>
<u></u>