1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sesenic [268]
1 year ago
14

If a spring is stretched 4m from its starting length when 20n of force is applied, then how much work (in joules) is done by the

spring when it is stretched 10 m?
Physics
1 answer:
lys-0071 [83]1 year ago
5 0

ANSWER:

250 J

STEP-BY-STEP EXPLANATION:

F = 20N is required to stretch the spring by 4 meters

We know that the force is equal to:

F=k\cdot x

We solve for k (spring constant):

k=\frac{F}{x}=\frac{20}{4}=5\text{ N/m}

The work done in stretching the spring is given by the following equation (in this case the stretch is 10 meters:

\begin{gathered} W=\frac{1}{2}k\cdot x^2 \\ \text{ Replacing} \\ W=\frac{1}{2}\cdot5\cdot10^2 \\ W=250\text{ J} \end{gathered}

The work required is 250 joules.

You might be interested in
On a hot day, the deck of a small ship reaches a temperature of 48
AlekseyPX

The final temperature of the seawater-deck system is 990°C.

<h3>What is heat?</h3>

The increment in temperature adds up the thermal energy into the object. This energy is Heat energy.

The deck of a small ship reaches a temperature Ti= 48.17°C seawater on the deck to cool it down. During the cooling, heat Q =3,710,000 J are transferred to the seawater from the deck. Specific heat of seawater= 3,930 J/kg°C.

Suppose for 1 kg of sea water, the heat transferred from the system is given by

3,710,000 = 1 x 3,930 x (T - 48.17)

T = 990°C  to the nearest tenth.

The final temperature of the seawater-deck system is 990°C.

Learn more about heat.

brainly.com/question/13860901

#SPJ1

6 0
2 years ago
Which of the following is an example of heat convection?
lora16 [44]
I believe it’s a liquid inside a beaker on a hot Bunsen burner (c)

This is because : Everyday Examples of Convection
Boiling water - The heat passes from the burner into the pot, heating the water at the bottom. Then, this hot water rises and cooler water moves down to replace it, causing a circular motion. Radiator - Puts warm air out at the top and draws in cooler air at the bottom.

Not sure if it’s right tho!
8 0
3 years ago
Read 2 more answers
A stone is thrown at an angle of 30 degrees above the horizontal from the top edge of a cliff with an initial speed of 12 m/s. A
natta225 [31]

v = initial velocity of launch of the stone = 12 m/s

θ = angle of the velocity from the horizontal = 30

Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.

v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s

a = acceleration of the stone = - 9.8 m/s²

t = time of travel = 4.8 s

Y = vertical displacement of stone = vertical height of the cliff = ?

using the kinematics equation

Y = v₀ t + (0.5) a t²

inserting the values

Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²

Y = - 84.1 m

hence the height of the cliff comes out to be 84.1 m

5 0
3 years ago
A student completed a lab report. Which correctly describes the difference between the "Question" and "Hypothesis" sections
galben [10]

Answer:

the second one!

Explanation:

the question is well, the question, a hypothesis is an educated guess on what you think will be the outcome

4 0
3 years ago
Read 2 more answers
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 128 ∘C. The gas expands and, in the process, a
o-na [289]

Answer:

The final temperature of the gas is <em>114.53°C</em>.

Explanation:

Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:

ΔU=Q - W

ΔU = 1180 J - 2020 J = -840 J

Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:

ΔU=\frac{3}{2} nRΔT

ΔU=\frac{3}{2} nR(T_{2} -T_{1} )

Then we make the final temperature, T₂, subject of the formula:

T_{2} =\frac{2ΔU}{3nR} +T_{1}

T_{2} =\frac{2(-840J)}{(3)(5)(8.314J/mol.K)} +128 deg.C

T_{2} =114.53 deg.C

Therefore the final temperature of the gas, T₂, is 114.53°C.

7 0
3 years ago
Other questions:
  • a bullet is dropped from the same height when another bullet is fired horizontally they will hit the ground
    12·1 answer
  • How many atoms are present in 3 molecules of chromium
    11·1 answer
  • What is the relationship between the mass and period in a mass hanging on spring oscillation and why?
    5·1 answer
  • How does no light affect the plants?
    10·1 answer
  • 50 points for any help on these 3 physics problems!!!!
    5·1 answer
  • What are the 2 types of electricity
    8·1 answer
  • (Q020) Stars a. all explode cataclysmically when they die and contribute their matter to future star generations. b. begin as pr
    5·1 answer
  • Qqqqqqqqqqqqqqqqqqqqqqqqqqqq
    13·1 answer
  • How long does it take for earth to complete one full rotation?
    8·1 answer
  • When the stomes are unloaded into water, the water level falls because the volume of the water displaced by stones in water will
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!