Answer:
add x to 7 and divide by 3
Explanation:
easier formula
Answer:
both are done due to the enviroment??
Answer:
[H⁺] = 1.0 x 10⁻¹² M.
Explanation:
∵ [H⁺][OH⁻] = 10⁻¹⁴.
[OH⁻] = 1 x 10⁻² mol/L.
∴ [H⁺] = 10⁻¹⁴/[OH⁻] = (10⁻¹⁴)/(1 x 10⁻² mol/L) = 1.0 x 10⁻¹² M.
∵ pH = - log[H⁺] = - log(1.0 x 10⁻¹² M) = 12.0.
∴ The solution is basic, since pH id higher than 7 and also the [OH⁻] > [H⁺].
I think- IDK
Answer:
a solution: for example when sugar is dissolved in water it becomes a sugar solution
Answer:
0.2193 μm
Explanation:
The reaction showing the Photodissociation of ozone (O3) is given below as:
O₃ + hv --------------------------> O₂ + O⁺
H° (142.9) (0) (438kJ/mol).
The first thing to do here is to determine the change in the enthalpy of the total reaction, this can be done by subtracting the change in the enthalpy of the reactant from the change in enthalpy in the product. Hence, we have:
ΔH° = [438 kJ/mol + 247.5 kJ/mol] - (142.9) = 542.6 KJ/mol.
This value, that is 542.6 KJ/mol will then be used in the determination of the value for the maximum wavelength that could cause this photodissociation.
Therefore, the maximum wavelength could cause this photodissociation ≤ h × c/ E = [ 1.199 × 10⁻⁴]/ 542.6 = 2.193 × 10⁻⁷ = 0.2193 μm