Answer:
a = 3.27 m/s²
T = 275 N
Explanation:
Given that:
Mass m₁ = 42.p0 kg
Mass m₂ = 21.0 kg
Consider both masses to be in a whole system, then:
The acceleration can be determined as:

Making acceleration the subject in the above formula;




a = 3.27 m/s²
in the string, the tension is calculated using the formula:



T = 274.68 N
T ≅ 275 N
Explanation:
a) d = ½.a.t²
200 = ½(4)t²
200 = 2t²
t² = 200/2
t² = 100
t =√100 = 10 s
b) Vt = a. t
= 4(10)
= 40 m/s
c) V av. = d/t = 200/10 = 20m/s
The car will gain new momentum if it's velocity is doubled or tripled.
The moon has approximately 1/4 of earths diameter, 1/50 of earths volume and 1/80 of earths mass
Answer:
29.4m/s
Explanation:
Given parameters:
Time = 3s
Unknown:
Average velocity = ?
Solution:
To solve this problem, we use the expression below:
v = u + gt
v is the average velocity
u is the initial velocity = 0m/s
g is the acceleration due to gravity = 9.8m/s²
t is the time
So;
v = 0 + (9.8 x 3) = 29.4m/s