1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
11

A comet with a mass of 7.85 × 1011 kg is moving with a velocity of 25,000 m/s. calculate its kinetic energy.

Physics
1 answer:
Nadusha1986 [10]3 years ago
6 0
The kinetic energy of an object is given by:
K= \frac{1}{2}mv^2
where
K is the kinetic energy
m is the mass of the object
v is its velocity.

The comet in our problem has a mass of m=7.85 \cdot 10^{11} kg and a velocity of v=25000 m/s, so its kinetic energy is:
K= \frac{1}{2}(7.85 \cdot 10^{11} kg)(25000 m/s)^2=2.45 \cdot 10^{20}J
You might be interested in
A hypothetical planet has a mass 2.81 times that of Earth, but the same radius.
patriot [66]

The acceleration due to gravity near the surface of the planet is 27.38 m/s².

<h3>Acceleration due to gravity near the surface of the planet</h3>

g = GM/R²

where;

  • G is universal gravitation constant
  • M is mass of the planet
  • R is radius of the planet
  • g is acceleration due to gravity = ?

g = (6.626 x 10⁻¹¹ x 2.81 x 5.97 x 10²⁴) / (6371 x 10³)²

g = 27.38 m/s²

Thus, the acceleration due to gravity near the surface of the planet is 27.38 m/s².

Learn more about acceleration due to gravity here: brainly.com/question/88039

#SPJ1

4 0
1 year ago
Determine the acceleration of a pendulum bob as it passes through an angle of 15 degrees to the right of the equilibrium point.
BigorU [14]

Answer:

Explanation:

Since energy is conserved:

2

mu  

2

 

​

=  

2

mv  

2

 

​

+mgh

⇒u  

2

=v  

2

+2gh

⇒(3)  

2

=v  

2

+2(9.8)(0.5−0.5cos60)

⇒v=2m/s

7 0
3 years ago
The Hubble Space Telescope orbits the Earth at approximately 612,000m altitude. Its mass is 11,100 kg and the mass of earth is 5
nexus9112 [7]

Answer:

7.55 km/s

Explanation:

The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

G\frac{mM}{R^2}=m\frac{v^2}{R}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2} is the gravitational constant

m=11,100 kg is the mass of the telescope

M=5.97\cdot 10^{24} kg is the mass of the Earth

R=r+h=6.38\cdot 10^6 m+612,000 m=6.99\cdot 10^6 m is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)

v = ? is the orbital velocity of the Hubble telescope

Re-arranging the equation and substituting numbers, we find the orbital velocity:

v=\sqrt{\frac{GM}{R}}=\sqrt{\frac{(6.67\cdot 10^{-11})(5.97\cdot 10^{24} kg)}{6.99\cdot 10^6 m}}=7548 m/s=7.55 km/s

6 0
3 years ago
liquid helium has a very low boiling point, 4.2 k, as well as a very low latent heat of vaporization, 2.00 104 j/kg. if energy i
aksik [14]

4.80 \times 10^3 \text { seconds }  long does it take to boil away 2.40 kg of the liquid.

Boiling point of He is $T=4.2 \mathrm{k}$

Latent heat of vapourization $L=2.00 \times 10^4 \mathrm{~J} / \mathrm{kg}$

Power of electrical heater $P=30 \mathrm{w}$

mass of liquid is $m=2.40 \mathrm{~kg}$

amount of heat required to boil

$$\begin{aligned}&Q=m L \\&Q=2.40 \times 2 \times 10^4 \mathrm{~J} \\&Q=4.80 \times 10^4 \mathrm{~J}\end{aligned}$$

Power $p=\frac{\text { work }}{\text { time }}=\frac{\text { Energy }}{\text { Time }}$

$$\begin{aligned}P &=\frac{Q}{t} \\\text { tine } t &=\frac{Q}{P}=\frac{4.80 \times 10^4 \mathrm{~J}}{10} \\t &=4.80 \times 10^3 \text { seconds }\end{aligned}$$

The heat or energy that is absorbed or released during a substance's phase shift is known as latent heat. It could go from a solid to a liquid or from a liquid to a gas, or vice versa. Enthalpy, a characteristic of heat, is connected to latent heat.

The heat that is used or lost as matter melts and transitions from a solid to a fluid form at a constant temperature is known as the latent heat of fusion.

Due to the fact that during softening the heat energy anticipated to transform the substance from solid to fluid at air pressure is the latent heat of fusion and that the temperature remains constant during the process, the "enthalpy" of fusion is a latent heat. The enthalpy change of any quantity of material during dissolution is known as the latent heat of fusion.

For learn more about Latent heat of vaporization, visit: brainly.com/question/14980744

#SPJ4

3 0
1 year ago
What changes would result in a decrease in the gravitational force between two objects? Check all that apply.
REY [17]

<em>I'm sorry, it says check all that apply, however there are no choices given. You should edit, and add the multiple choice answers.</em>

My Answer:

Well if the masses of two objects were both decreased, it would result in a decrease in the gravitational force. So I guess the two objects masses would need to be decreased.

4 0
3 years ago
Other questions:
  • Find the momentum<br> of a<br> 30g ball traveling<br> 12 m/s
    10·1 answer
  • In a 100-m race, the winner is timed at 11.2 s. The second-place finisher’s time is 11.6 s. How far is the second-place finisher
    7·1 answer
  • A truck going 15 km/h has a head-on collision with a small car going 30 km/h.
    9·1 answer
  • A scientist wants to test ways to reduce pollution in lake . What is the bestway of doing this
    13·2 answers
  • After a short time, the moving sled with the child aboard reached a rough level surface that exerts a constant frictional force
    8·2 answers
  • If a ray of light traveling in the liquid has an angle of incidence at the interface of 33.0 ∘, what angle does the refracted ra
    5·1 answer
  • Please help find the total resistance of these circuits!! I will mark brainliest if right!!
    12·1 answer
  • A long distance runner running a 5.0km track is pacing himself by running 4.5km at 9.0km/h and the rest at 12.5km/h. What is his
    5·1 answer
  • A phonograph turntable rotating at 33 1 3 rev/min slows down and stops in 1.98 min. (Assume the turntable initially rotates in t
    8·1 answer
  • What is the magnitude of the magnetic dipole moment of the bar magnet
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!