Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: 
Initial temperature wall = 
Surface temperature = T
Gas exposed temperature = 
Answer:
a.) -147V
b.) -120V
c.) 51V
Explanation:
a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).
b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.
c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.
Honestly, these things take practice to get used to. It's really hard to explain this.
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:
With increased technological knowledge and consequent decreased factors of ignorance, the structures have less inert masses and therefore less need for such decoration. This is the reason why the modern buildings are plainer and depend upon precision of outline and perfection of finish for their architectural effect.
Answer:
While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.
Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.