The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.
Answer:
Explanation:
Work is defined as the scalar product of force and distance
W=F•d
Given that
F = 8.5i + -8.5j. +×-=-
F=8.5i-8.5j
d = 2.5i + cj
If the work in the practice is zero, then W=0
therefore,
W=F•ds
0=F•ds
0=(8.5i -8.5j)•(2.5i + cj)
Note that
i.i=j.j=k.k=1
i.j=j.i=k.i=i.k=j.k=k.j=0
So applying this
0=(8.5i -8.5j)•(2.5i + cj)
0= (8.5×2.5i.i + 8.5×ci.j -8.5×2.5j.i-8.5×cj.j)
0=21.25-8.5c
Therefore,
8.5c=21.25
c=21.25/8.5
c=2.5
Answer:
Newton's second law states that when a body of mass m is accelerated with force f
then F=ma
this means acceleration of an object depends on both force with which it is moving as well as its mass
Answer:
25/30 = 5/6 m/s^2 5/6 meters per second squared