Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
Answer:
A. The bird watcher followed the south trail a distance of five kilometers in 45 minutes.
Answer:
5.02 m
Explanation:
Applying the formula of maximum height of a projectile,
H = U²sin²Ф/2g...................... Equation 1
Where H = maximum height, U = initial velocity, Ф = angle, g = acceleration due to gravity.
Given: U = 46 ft/sec = 14.021 m/s, Ф = 45°
Constant: g = 9.8 m/s²
Substitute these values into equation 1
H = (14.021)²sin²45/(2×9.8)
H = 196.5884×0.5/19.6
H = 5.02 m.
Hence the ball goes 5.02 m high
Answer:
A: In all cases, the acceleration was the same.
Explanation:
I know this because its a clear obvious answer not only that it was one of my USA TESTPREP questions and it was right.
All you mainly have to do is the math - F=ma , In each case , the acceleration is 5 m/s squared