<span>Jet streams act as an invisible director of the atmosphere and are largely responsible for changes in the weather across the globe.
Hope this helps</span>
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Answer:

Explanation:
Since the object is under a circular motion, according to Newton's second law, when the object is at the top of the circle we have:

Where
is the centripetal force and is given by:

Replacing and solving for T:

Answer:
6J
Explanation:
Given parameters:
Mass of fish = 1kg
Velocity = 12m/s
Unknown:
Change in kinetic energy = ?
Solution:
Kinetic energy is the energy due to the motion of a body. It is mathematically given as:
K.E =
m v²
Now, insert the parameters and solve;
K.E =
x 1 x 12 = 6J
The change in kinetic energy is 6J
Answer : The momentum of ball is, 15 kg.m/s
Explanation :
Momentum : It is defined as the motion of a moving body. Or it is defined as the product of mass of velocity of an object.
Formula of momentum is:
where,
p = momentum = ?
m = mass = 1.5 kg
v = velocity = 10 m/s
Now put all the given values in the above formula, we get:
Therefore, the momentum of ball is 15 kg.m/s