The equation relating velocity and wavelength is written below:
v = λf
where λ is the wavelength in m while f is frequency in 1/s.
Let's determine first the frequency from the speed of light:
c = distance/time, where c is the speed of light equal to 3×10⁸ m/s
3×10⁸ m/s = (300 mm)(1 m/1000 mm)/ time
time = 1×10⁻⁹ seconds
Since f = 1/t,
f = 1/1×10⁻⁹ seconds = 10⁹ s⁻¹
Thus,
v = (795×10⁻⁹ m)(10⁹ s⁻¹)
v = 795 m/s
the minimum frequency of radiation that will produce a photoelectric effect
<h2>#CarryOnLearning</h2>
<h3>
Answer:</h3>
Balanced equation: 4Fe + 3O₂ → 2Fe₂O₃
Moles of oxygen gas = 9 moles
<h3>
Explanation:</h3>
To answer the question;
- We first write the balanced equation between iron metal and Oxygen
- The balanced equation is given as;
4Fe + 3O₂ → 2Fe₂O₃
- We are given 6 moles of Fe₂O₃
We are required to determine the number of moles of oxygen needed to form 6 moles of Fe₂O₃.
- From the equation, 3 moles of oxygen gas reacts to produce 2 moles of Fe₂O₃
- This means, the mole ratio of O₂ to Fe₂O₃ is 3 : 2
Therefore; Moles of O₂ = Moles of Fe₂O₃ × 3/2
Hence, moles of oxygen = 6 moles × 3/2
= 9 moles
Thus, Moles of Oxygen needed is 9 moles
Answer:
- 13.56 g of sodium chloride are theoretically yielded.
- Limiting reactant is copper (II) chloride and excess reactant is sodium nitrate.
- 0.50 g of sodium nitrate remain when the reaction stops.
- 92.9 % is the percent yield.
Explanation:
Hello!
In this case, according to the question, it is possible to set up the following chemical reaction:

Thus, we can first identify the limiting reactant by computing the yielded mass of sodium chloride, NaCl, by each reactant via stoichiometry:

Thus, we infer that copper (II) chloride is the limiting reactant as it yields the fewest grams of sodium chloride product. Moreover the formed grams of this product are 13.56 g. Then, we take 13.56 g of sodium chloride to compute the consumed mass sodium nitrate as it is in excess:

Therefore, the leftover of sodium nitrate is:

Finally, the percent yield is computed via:

Best regards!
Answer:
0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O₃: 2 moles
You can apply the following rule of three: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, 0.15 moles of Fe produce how many moles of Fe₂O₃?

moles of Fe₂O₃= 0.075
<u><em>0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.</em></u>