Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole
<span>The first method to determine the chemical composition of a substance in space was using light. By determining red shift in the observed spectrum of light they could determine the elements they were observing. Different elements change the way light behaves and from this scientists can determine the makeup of things such as stars and nebulas.</span>
Answer: IONIC EQUATION.
Explanation:
A chemical equation is defined as the form by which a chemical reaction is represented mathematically. These are written in the form of symbols and chemical formulas of reactants and products which are taking part in the chemical reaction. A chemical equation can be written in two forms, these include:
--> MOLECULAR EQUATION: in this type of equations, the compounds are written and represented in a molecular form. This is sometimes referred to as a balanced equation.
--> IONIC EQUATION: This is a type of chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions. A typical illustrated example is seen in the reaction between AgNO3(aq) and NaCl(aq) :
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq)
The (aq) written in the above equation signifies they are in aqueous solution.
Answer:
Option b, The change in free energy of the reaction (ΔG)
Explanation:
Gibbs free energy is a measure of amount of usable energy in the system.
It is related with enthalpy (H), entropy (S) and temprature (T) as:
G = H - TS
The Gibbs free energy change (ΔG) provide spontaneity of a chemical reaction.
If ΔG is negative, then reaction is spontaneous that means reaction is moving towards forward direction.
If ΔG is positive, then reaction is non-spontaneous that means reaction is moving in backward direction.
If ΔG is zero, then reaction is at equilibrium.
Change in enthalpy only gives informtion about heat involed in a chemical reaction, it does not give information about direction of the reaction.
So, among the given options, option b is correct.