Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Answer:
option (E) 1,000,000 J
Explanation:
Given:
Mass of the suspension cable, m = 1,000 kg
Distance, h = 100 m
Now,
from the work energy theorem
Work done by the gravity = Work done by brake
or
mgh = Work done by brake
where, g is the acceleration due to the gravity = 10 m/s²
or
Work done by brake = 1000 × 10 × 100
or
Work done by brake = 1,000,000 J
this work done is the release of heat in the brakes
Hence, the correct answer is option (E) 1,000,000 J
It's cold outside, the water vaper in your breath condenses into tiny droplets of liquid water and ice that you can see.
Answer:
Option (e)
Explanation:
A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,
Energy density = 100 J/m
Let Q be the charge on the plates.
Energy density = 1/2 x ε0 x E^2
100 = 0.5 x 8.854 x 10^-12 x E^2
E = 4.75 x 10^6 V/m
V = E x d
V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V
C = ε0 A / d
C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F
Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C
Q = 190 nC