Answer:
The decision designer is a step-wise process
Explanation:
A typical decision tree will be like this:
Are there any forces?
YES - then calculate the resultant forces NO - Then no calculations are needed
IF YES - Are the forces balanced? NO - Then no calculations
IF YES - Then calculations can be done.
Resolve the forces to find the resultant of the forces in the question.
Answer:
a) 24.4 Ω
b) 4.92 A
c) 495.9 W
d)
c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.
Explanation:
b)
The formula for power is:
P = IV
where,
P = Power of heater = 590 W
V = Voltage it takes = 120 V
I = Current Drawn = ?
Therefore,
590 W = (I)(120 V)
I = 590 W/120 V
<u>I = 4.92 A</u>
<u></u>
a)
From Ohm's Law:
V = IR
R = V/I
Therefore,
R = 120 V/4.92 A
<u>R = 24.4 Ω</u>
<u></u>
c)
For constant resistance and 110 V the power becomes:
P = V²/R
Therefore,
P = (110 V)²/24.4 Ω
<u>P = 495.9 W</u>
<u></u>
d)
If the resistance decreases, it will increase the current according to Ohm's Law. As a result of increase in current the power shall increase according to formula (P = VI). Therefore, correct option is:
<u>c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.</u>
<u>We are given:</u>
Mass of the rocket = 10 kg
Weight of the Rocket = 100 N
Upward thrust applied by the rocket = 400 N
<u>Net upward force on the rocket:</u>
We are given that gravity pulls the rocket with a force of 100 N
Also, the rocket applied a force of 400N against gravity
Net upward force = Upward thrust - Force applied by gravity
Net upward force = 400 - 100
Net upward force = 300 N
<u>Upward Acceleration of the Rocket:</u>
From newton's second law:
F = ma
<em>replacing the variables</em>
300 = 10 * a
a = 30 m/s²
Answer:
The red car would experience the greatest acceleration.
Explanation:
Newton says that Force equals mass times acceleration or F = ma
We get a = F/m
If we want the greatest acceleration or a, mass or m must be the lowest.