<h3><u>Answer;</u></h3>
- In a freshwater lake
- In the atmosphere
- In Earth's mantle
<h3><u>Explanation</u>;</h3>
- <em><u>Convection currents are types that cause the process of convection, which the transfer of heat energy that occurs in fluids.</u></em>
- <em><u>Convection currents are circular patterns that occurs in fluids such that the less dense warm fluids rises up while denser cold fluids sinks, </u></em>it is this movement of less dense warm fluid and denser cold fluids that creates circular patterns that causes the process of convection to take place.
- <em><u>Convection currents may occur in the atmosphere where warm air rises while cold denser air sinks or moves towards the bottom, it may also occur in the mantle of the Earth and water or water bodies such as lakes.</u></em>
Define
v = volume of a drop per second, cm³/s
The time taken to fill 200 cm³ is 1 hour.
Let V = 200 cm³, the filled volume.
Let t = 1 h = 3600 s, the time required to fill the volume.
Therefore,

The average volume of a single drop is approximately 0.0556 cm³.
Answer: 0.0556 cm³
Answer:
The answer to your question is 636.6 ft
Explanation:
Data
base = 425 ft
angle = 39°
See the picture below
1.- Divide the triangle to get two right triangles.
Now the superior angle will measure 19.5° and the opposite side will measure 212.5 ft
2.- Use the trigonometric function sine to find the hypotenuse
sin 19.5 = 212.5/hyp
solve for hyp
hyp = 212.5 / sin 19.5
Result
hyp = 212.5/ 0.333
hyp = 636.6 ft
In a constant acceleration of 3m per second, after 10 seconds,
3 x 10 = 30
B. 30m/s is your answer
hope this helps :D
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)