If current is passed through two parallel conductors in the same direction and the conductors are placed near each other, they will attract each other.
<h3>What is electric current?</h3>
Electric current can be defined as the flow of electrons.
Since electrons are easily removed from atom and are very mobile, the flow of electrons constitute an electric current.
Materials which allow electric current to flow through them are known as conductors. Examples of conductors are metals, and electrolytes.
On the other hand, materials which do not allow electric current to pass through them are known as insulators. Examples of insulators are wood and rubber.
The flow of current is known as electricity.
Parallel conductors with current flowing through them in the same direction are attracted to each other as a result of a magnetic field produced by the flow of current.
In conclusion, conductors allow electric current to pass through and the flow of current through a conductor produces a magnetic field.
Learn more about parallel conductors at: brainly.com/question/17148082
#SPJ1
Answer:
Cracking of an egg is a physical change since the egg and the stuff inside does not change but the shape or appearance of the shell changes.
Explanation:
Hope it helps
Answer:
The tension is 
Explanation:
The free body diagram of the question is shown on the first uploaded image From the question we are told that
The distance between the two poles is 
The mass tied between the two cloth line is 
The distance it sags is 
The objective of this solution is to obtain the magnitude of the tension on the ends of the clothesline
Now the sum of the forces on the y-axis is zero assuming that the whole system is at equilibrium
And this can be mathematically represented as

To obtain
we apply SOHCAHTOH Rule
So 
![\theta = tan^{-1} [\frac{opp}{adj} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7Bopp%7D%7Badj%7D%20%5D)
![= tan^{-1} [\frac{1}{7}]](https://tex.z-dn.net/?f=%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B7%7D%5D)






300 000 000 m/s in km/s
1000 m = 1km
300 000 000 m/s = 3 * 10⁸ m/s = 3 * 10⁵ *10³ m/s
= 3 * 10⁵ *10³ m/s
= 3 * 10⁵ km/s
Speed = 3 * 10⁵ km/s