Answer:
T1 = 490.5 [N], T2 = 490.5[N]
Explanation:
First, we must draw a free body diagram of the steel ball hanging and the two wires holding it as well as the angle forming the wires between them.
The free-body diagram can be seen in the attached image.
As the cables are symmetrical with respect to the vertical axis, the force in cables 1 and 2 is equal, so when performing a force sum equal to zero on the Y-axis, we can find the force value of any cable.
The solution of the equations can be seen in the attached image
Answer:
the object will not return to the original position because it will not have any forces helping it to go up the hill
the center of mass falls since it is going downwards
Hope this helps!! have a great day
Explanation:
Answer:
m = 2.2 x 10⁻⁴ kg = 0.22 g
Explanation:
The surface tension of water is 0.072 N/m. So in order for the bug to avoid sinking, its weight per unit length of contact must be no more than the surface tension of water. Therefore,

where,
m = mass of bug = ?
g = acceleration due to gravity = 9.81 m/s²
L = Contact length = (contact length of each leg)(No. of Legs) = (5 mm)(6)
L = 30 mm = 0.03 m
Therefore,

<u>m = 2.2 x 10⁻⁴ kg = 0.22 g</u>
Answer:
25,300,000,000,000 miles away
Your answer is correct: Resident 4 would provide the scientist with the most valid results.