We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
The prefix for oxygen in As2O5 is PENTA.
Penta is used to show that the number of oxygen atoms present in the compound is five. Penta means five, while mono mean one, di means two, tri means three and tetra mans four and so on. The chemical name for the given compound is Arsenic pentoxide.
An applied force<span> is a </span>force<span> that is </span>applied<span> to an object by a person or another object.
An attractive force is a force of an attraction (where object are attracted by each other). Gravitation is an example of attractive force.
</span>Normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact.
</span><span>The softball experiences an applied force as a result of Amy’s throw. As the ball moves, it experiences attractive force from the air it passes through. It also experiences a downward pull because of the normal force.
Solution A.</span>
To solve this problem we will apply the concepts related to the balance of forces. We will decompose the forces in the vertical and horizontal sense, and at the same time, we will perform summation of torques to eliminate some variables and obtain a system of equations that allow us to obtain the angle.
The forces in the vertical direction would be,



The forces in the horizontal direction would be,



The sum of Torques at equilibrium,




The maximum friction force would be equivalent to the coefficient of friction by the person, but at the same time to the expression previously found, therefore


Replacing,


Therefore the minimum angle that the person can reach is 46.9°
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:


