Answer:
I believe it is False.
Explanation:
Hope my answer has helped you!
Oxygenated blood that has oxygen in them while de-oxygenated blood has carbon dioxide. in which the oxygenated blood carries the oxygen throughout the body since that cells need oxygen to function. called "gas exchange." once the cells got their required oxygen. the carbon dioxide needs somewhere to go, thus having deoxygenated blood. and that carbon dioxide needs to get out of the body
Answer:So, the difference between charging by induction and conduction comes down to the contact of the neutral object and the object used to charge it. Conduction requires direct contact, while induction does not.
Explanation:
Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:
ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:
r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:
Finally, you obtain for E:
hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
Answer:
Plants are a good starting point when looking at the carbon cycle on Earth. Plants have a process called photosynthesis that enables them to take carbon dioxide out of the atmosphere and combine it with water. Using the energy of the Sun, plants make sugars and oxygen molecules.