Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
By working with percentages, we want to see how many inches is the center of gravity out of the limits. We will find that the CG is 1.45 inches out of limits.
<h3>What are the limits?</h3>
First, we need to find the limits.
We know that the MAC is 58 inches, and the limits are from 26% to 43% MAC.
So if 58 in is the 100%, the 26% and 43% of that are:
- 26% → (26%/100%)*58in = 0.26*58 in = 15.08 in
- 43% → (43%/100%)*58in = 0.43*58 in = 24.94 in.
But we know that the CG is found to be 45.5% MAC, then it measures:
(45.5%/100%)*58in = 0.455*58in = 26.39 in
We need to compare it with the largest limit, so we get:
26.39 in - 24.94 in = 1.45 in
This means that the CG is 1.45 inches out of limits.
If you want to learn more about percentages, you can read:
brainly.com/question/14345924
It is weight, if I understand your question.
<u>Answer:</u> Below 12m of depth, the submarine has to submerge so that it would not be swayed by surface waves
<u>Explanation:</u>
To avoid the surface waves, a submarine has to submerge below the wave base. It is the position below which the motion of the waves is negligible.
This wave base is equal to half of the wavelength. The equation becomes:
Wave base = 
We are given:
Wavelength = 24 m
Putting values in above equation, we get:
Wave base = 
Hence, below 12m of depth, the submarine has to submerge so that it would not be swayed by surface waves